

LBRCEPage 1

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING
(AUTONOMOUS)

L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

DEPARTMENT

OF

INFORMATION TECHNOLOGY

COMPUTER NETWORKS (20CS60)

B.Tech. V SEM

Mr.K.Rajasekhar

LBRCEPage 2

Experiment-1

Aim: To gain familiarity with the basic ‘networks’ commands & utilities available in the

Linux OS.

Some general tips:

● If any command is not installed on your system, do sudo apt-get update on the Terminal

followed by sudo apt-get install <name> to install it.

● To see more details about any command, type man <name> on the Terminal.

● Running <name> -h on your Terminal will display the help menu of that command.

Procedure:

Run the following commands on your Terminal window.

1) Troubleshooting network hosts

a) ping <address>

Short for Packet InterNet Groper, the ping command is used to test the ability of your

computer to reach a specified destination computer. The ping command is usually used

as a simple way to verify that a computer can communicate over the network with

another computer or network device. The ping utility is commonly used to check for

network errors, and works by sending ICMP ECHO_REQUEST to network hosts.

LBRCEPage 3

Figure.1. Output of ping command

Ping two different machines, one within India and the other one outside India, and

observe the latency.

Understanding about network interfaces

b) ifconfig [options]

ifconfig is used to configure the network interfaces. It is used at boot time to set up

interfaces as necessary. After that, it is usually only needed when debugging or when

system tuning is needed.

LBRCEPage 4

If no arguments are given, ifconfig displays the status of the currently active interfaces.

Figure.2. The output of “ifconfig” command

If a single interface argument is given, it displays the status of the given interface only;

Figure.3. The output displayed on running “ifconfig
eth0”

LBRCEPage 5

if a single -a argument is given, it displays the status of all interfaces, even those that are

down.

Figure.4. The output displayed on running “ifconfig -a”
What is the IPv4 address of your computer?

What is the MAC address/HW address of your NIC card?

c) sudo ifconfig eth0 down

The above command will bring the ethernet interface down, meaning, the system would

be disconnected from the network. Now, try to ping any network host. What is the

observed output?

d) sudo ifconfig eth0 up

This command will call DHCP service which is involved in obtaining an IP address. Now,

ping to any external system. What is the observed output?

e) ifplugstatus

The ifplugstatus command will tell you whether a cable is plugged into a network

interface or not. It isn’t installed by default on Ubuntu. Use the following command to

install it:

sudo apt-get install ifplugd

LBRCEPage 6

Figure.5. Installing “ifplugd” in Ubuntu system The

output of ifplugstatus command when the cable is plugged.

Figure.6. The output of “ifplugstatus” command

2) Finding all the intermediate network systems

a) traceroute <address>

It isn’t installed by default on Ubuntu. Use the following command to

install it: sudo apt-get install traceroute

traceroute is a command used to display the intermediate nodes through which a packet

flows from a source location to a destination location. A program capable of doing the

same in Microsoft Windows is tracert.

LBRCEPage 7

Figure.7. The output of “traceroute” command

Observe the latency for every hop, IP address of the First hop router, and First hop of your ISP,

and Total number ISPs which your search explored.

1) DNS tools

Find the IP addresses of the following

machines: bits-hyderabad.ac.in

swd.bits-

hyderabad.ac.in

sites.bits-

hyderabad.ac.in

a) nslookup <address>

nslookup is a program to query Internet domain name servers. nslookup has two modes:

interactive and noninteractive. Interactive mode allows the user to query name servers

for information about various hosts and domains or to print a list of hosts in a domain.

Non-interactive mode is used to print just the name and requested information for a host

or domain.

Figure.8. The output of “nslookup” command

LBRCEPage 8

b) host <address>

host is a simple utility for performing DNS lookups. It is normally used to convert names

to IP addresses and vice versa. When no arguments or options are given, host prints a

short summary of its command line arguments and options.

Figure.9. The output of “host” command

c) dig <address>

domain information groper or dig is a flexible tool for interrogating DNS name servers.

It performs DNS lookups and displays the answers that are returned from the name

server(s) that were queried.

Figure.10. The output of “dig” command

LBRCEPage 9

d) DNS Configuration file

All DNS tools makes use of system DNS configuration file located at /etc directory

(/etc/resolv.conf). The contents of the file should appear like the below screenshot.

Figure.11. The configuration file “/etc/resolv.conf”

2) Copying files from/to a remote host

a) scp

scp allows files to be copied to, from, or between different

hosts. For example,

“scp remote_username@remote_host:/home/remote_username/file.txt

/home/your_username” will copy the file “file.txt” (located at

/home/remote_username) of the remote host

“remote_host” to your local directory (/home/your_username).

To download the tar file (CNLab1.tar) from host 172.16.4.100 to your system, the command

is sudo scp ipc1@172.16.4.100:/home/ipc1/CNLab1.tar /home/ipc1

Figure.12. Ubuntu Terminal Output

To upload a tar file (2011A7PS111H.tar) from your local directory to a remote directory, the

command is

sudo scp /home/ipc1/2011A7PS111H.tar ipc1@172.16.4.100:/home/ipc1

Figure.13. Ubuntu Terminal Output

Now, try to download the folder (/home/ipc1/Lab1) from host 172.16.4.100 to your local PC.

Also, try to upload your own folder to a remote host. (The folder and all its contents including

sub-folders should be copied).

LBRCEPage 10

3) To test the speed of internet connection

Run the following commands for installing speedtest-cli package.

sudo apt-get install python-pip

sudo pip install speedtest-cli

After installation, type “speedtest” in the Terminal and press enter. The output should be

similar to the figure below.

Figure.14. Ubuntu Terminal Output

References:

1. Linux ‘man pages’ available at http://linux.die.net/man/

2. http://www.computerhope.com/
http://www.webupd8.org/2014/02/how-to-test-internet-speed-via-command.html

http://www.google.com/url?q=http%3A%2F%2Flinux.die.net%2Fman%2F&sa=D&sntz=1&usg=AFQjCNFGMIza-8K_aJ4xqzNICsJjvXMyHg
http://www.google.com/url?q=http%3A%2F%2Fwww.computerhope.com%2F&sa=D&sntz=1&usg=AFQjCNF36_1kuvJiFxBlKXrxZXIhdqfDbQ
http://www.webupd8.org/2014/02/how-to-test-internet-speed-via-command.html

LBRCEPage 11

Experiment-2

AIM:- To learn about network layer tools and analyze captures for congestion.

To view routing table entries:

A routing table, or routing information base (RIB), is a data table stored in a router or a

networked computer that lists the routes to particular network destinations, and in some cases,

metrics (distances) associated with those routes. The routing table contains information about the

topology of the network immediately around it. The construction of routing tables is the primary

goal of routing protocols. Static routes are entries made in a

routing table by non­automatic means, which are fixed rather than being the result of some

network topology "discovery" procedure.

“route” command is used to print, add, delete, edit routes in kernel’s IP routing table. Its
primary use is to set up static routes to specific hosts or networks via an interface after it has been
configured with the ifconfig program. When the add or del options are used, route modifies the
routing tables. Without these options, route displays the current contents of the routing tables.

Tools used: route , ip route

Experiment 1:
1. Print routing table of your system. Use manual pages to capture observations that follow.

a. The command is “route”. Type “route” in Ubuntu terminal.

Figure.1.1 “route” output

a) What is the IP address of the default gateway (in your IPC system)?

b) What does the flags ‘U’ and ‘G’ represent?

c) What is the metric value for default gateway?

b. Option “­n” displays all symbolic references in numeric values.

LBRCEPage 12

Figure.1.2 “route” numeric output

a) Which route will be taken by a packet with destination address as 172.16.5.128?

c. For faster processing, the routing table is stored in kernel cache. To retrieve table from

cache, use option “­C”. By default, “route” command shows the table stored in

FIB.

Figure.1.3 “route” output from kernel cache

Figure.1.4 “route” output from FIB

d. To display all the information in the routing table, use option “ee”.

Figure.1.5 “route” long listing

a) What are MSS and Window?

e. “netstat” command can also be used to display routing table.

Figure.1.6 “netstat” for displaying routing table

2. Add a route to the kernel route table
a. In order to add/delete routes, you should have root privileges. In the below figure,

LBRCEPage 13

a loopback address is added to the route.

Figure.1.7 Adding a loopback address

a) what happens when you add options of “window 6000 mss 1440 irtt 300” to the

route command in the above figure (note: to ‘add’ the route again, you must

‘delete’ it first as explained in step 3)

b. In the below figure, a route to IP address “192.56.76.0” is added. The next hop is
interface eth0.

Figure.1.8 Adding “192.56.76.0” as IP address

3. Delete a route in the kernel route table
a. Delete route for IP address “192.56.76.0” created in step 2b.

Figure.1.9 Delete “192.56.76.0” address from routing table

b. Delete loopback address route.

Figure.1.10 Delete loopback address

4. Add/Remove a default gateway

LBRCEPage 14

In the below experiment, we will delete the default gateway and re­create it.
a. Delete the route for default gateway by the following the below figure.

Figure.1.11 Delete default gateway

b. Use your browser and connect to gmail.com (or any other web­site). There will be a

connection error because default gateway is unavailable. The above can also be

tested using a “ping” command as shown below.

 Figure.1.12 ping not working

Add the default gateway back to its original value (172.16.4.1 for IPC1 lab).

Figure.1.13 Adding the default gateway

d. Use your browser and connect to gmail.com (or any other web­site). It should work
fine.

Analyse an internal network using Zenmap/nmap:

Nmap (Network Mapper) is a security scanner used to discover hosts and services on a

computer network, thus creating a "map" of the network. To accomplish its goal, Nmap sends

specially crafted packets to the target host and then analyzes the responses.

The software provides a number of features for probing computer networks, including host

LBRCEPage 15

discovery and service and operating system detection. These features are extensible by scripts

that provide more advanced service detection,vulnerability detection, and other features. Nmap

is also capable of adapting to network conditions including latency and congestion during a scan.

Zenmap is the official Nmap Security Scanner GUI. It is a multi­platform (Linux, Windows,
Mac OS X, BSD, etc.) free and open source application which aims to make Nmap easy for
beginners to use while providing advanced features for experienced Nmap users. Frequently used
scans can be saved as profiles to make them easy to run repeatedly. A command creator allows
interactive creation of Nmap command lines. Scan results can be saved and viewed later. Saved
scan results can be compared with one another to see how they differ. The results of recent scans
are stored in a searchable database. The topology view in the Zenmap uses many symbols and
color conventions.

Tool used: Zenmap

Experiment 2:

1. Port Scanning: Performs a port­scan to check for open ports on the specified IP address
range
Open zenmap and give the following details.

 Target: 172.16.5.0/27
Command: nmap 172.16.5.0/27

 Click “Scan” button on the top right corner.

LBRCEPage 16

Figure 2.1: port scan
a) Can you identify what ports are open on your neighbors’ system?

The below figure shows the network topology for the above scan (Click on the Topology tab).

Figure 2.2: Port scan Topology

a) What is your observation from the above topology?

2. Ping scan: Performs a Ping scan for the specified IP range. It can be used to figure out which
machines are up and are responding to pings.
Give the following details in zenmap:
Target: 172.16.5.0/24

 Command: choose the ping scan from the profile dropdown
Click “Scan” button on the top right corner.

LBRCEPage 17

Figure 2.3: Ping scan
3. Traceroute scan: Performs traceroute operation for specified IP addresses

(experiment with external IP’s ­ say 173.194.36.16/28)
Give the following details in zenmap:
Target: 172.16.5.0/24

 Command: choose the Quick traceroute from the profile dropdown
Click “Scan” button on the top right corner.

Figure 2.4: Quick Traceroute

LBRCEPage 18

Figure 2.5: Quick Traceroute Topology

4. Intense Scan: Enables OS detection, os version, script scanning and traceroute. This is

considered as an “intrusive scan”. Give the following details in zenmap:

Target: 172.16.5.0/24
Command: choose the intense scan from the profile dropdown
Click “Scan” button on the top right corner.

Figure 2.6: Intense scan

LBRCEPage 19

Figure 2.7: Intense scan Topology
Basic rule setting in iptables :- iptables is a user space application program that allows a system

administrator to

configure the tables provided by the Linux kernel firewall (implemented as different Netfilter

modules) and the chains and rules it stores. Different kernel modules and programs are currently

used for different protocols; iptables applies to IPv4, ip6tables to IPv6, arptables to ARP, and

ebtables to Ethernet frames. iptables requires elevatedprivileges to operate and must be

executed by user root, otherwise it fails to function. On most Linux systems, iptables is installed

as /usr/sbin/iptables and documented in its man pages which can be opened using man iptables

when installed. It may also be found in /sbin/iptables, but since iptables is more like a service

rather than an "essential binary", the preferred location remains /usr/sbin.

Tool used:iptables

Experiment 3:

1. To display firewall rule­set using iptables
a. Use “­L” option in “iptables” command. By default, “filter” table is displayed.

Figure 3.1 Listing firewall rules

LBRCEPage 20

b. Explicitly the table can be specified using “­t” option.

Figure 3.2 Listing firewall rules (using filter table)

2. To block gmail server, so that, your browser cannot open gmail.com.
a. Do a nslookup to find the IP addresses of gmail.com

Figure 3.3 nslookup for gmail.com

There are two IP addresses associated with gmail.com. Block both the IP addresses.

b. Add a firewall rule for outgoing traffic. All TCP packets are not allowed to reach

internet.

Figure 3.4 Adding a firewall rule

Figure 3.5 iptables showing added firewall rule

c. Similarly, add a firewall rule for rest of the IP addresses (Gmail server).

LBRCEPage 21

d. Open the browser and connect to gmail.com. What is the observation?
e. Do a ping to one of the IP addresses of Gmail.com. What is the observation?
f. Delete the above rules using “­D” option.

Figure 3.6 Delete a firewall rule

The above command will remove the first rule.
In a similar fashion, remove all the rules in the OUTPUT chain.
There is an option “­F” (flush) to remove rule­sets (“iptables ­F” will remove all the
rules).

3. To block all the outgoing packets to gmail.com

a. Add the firewall rule specified in the figure below.

Figure 3.7 Adding a firewall rule

b. Similarly, add rules for other IP addresses associated with gmail.com.

c. Do a ping for one of the IP addresses.

Figure 3.8 Testing with ping command

d. Delete the above rules using “­D” option.

Figure 3.9 Delete the firewall rule

The above command will remove the first rule.
In a similar fashion, remove all the rules in the OUTPUT chain.

LBRCEPage 22

Experiment-3
Aim: To learn about queue management techniques, and global routing in ns3
Study the performance of DropTail and RED queue management techniques:

Tail Drop, or Drop Tail, is a very simple queue management algorithm used by Internet routers, e.g.,
in the network schedulers, and network switches to decide when to drop packets. In contrast to
the more complex algorithms like RED and WRED, in Tail Drop the traffic is not differentiated. Each
packet is treated identically. With tail drop, when the queue is filled to its maximum capacity, the
newly arriving packets are dropped until the queue has enough room to accept incoming traffic.
The name arises from the effect of the policy on incoming datagrams. Once a queue has been filled,
the router begins discarding all additional datagrams, thus dropping the tail of the sequence of
datagrams. The loss of datagrams causes the TCP sender to enter slow start, which reduces
throughput in that TCP session until the sender begins to receive acknowledgements again and
increases its congestion window. A more severe problem occurs when datagrams from multiple
TCP connections are dropped, causing global synchronization; i.e., all the involved TCP senders
enter slow start. This happens because, instead of discarding many segments from one connection,
the router would tend to discard one segment from each connection.
Random early detection (RED), also known as random early discard or random early drop is an
queueing discipline for a network scheduler suited for congestion avoidance. RED monitors the
average queue size and drops (or marks when used in conjunction with ECN) packets based on
statistical probabilities. If the buffer is almost empty, all incoming packets are accepted. As the
queue grows, the probability for dropping an incoming packet grows too. When the buffer is full,
the probability has reached 1 and all incoming packets are dropped.

Experiment 1: Compare the performance of DropTail and RED queue techniques
1. Copy Red_vs_nlred.cc file from examples directory and put all .ccfiles into the scratch folder in
ns3. 2. The dropTail_vs_red.cc code simulates the following network topology

 Figure.1. Topology

LBRCEPage 23

3. The bandwidth and delay of the bottleneck link is 1 Mbps and 50 ms. The data rate at the source
nodes are higher than 1 Mbps. Since all traffic passes through a single route, there is a congestion
in the network. This leads to drop in packets.
 4. Copy the file to ns3_home_folder/scratch/ directory.
5. Open a terminal and navigate to ns3_home_folder.
6. Compile ns3 programs using the below command. ./waf
7. Run droptail_vs_red executable using the following command. ./waf run dropTail_vs_red vis
8. Simulator window will be opened on running the above command. Click “Simulate” button.
9. Wait for the simulation to complete. Once the simulation is completed, close the window.
 10.The terminal will show the total no. of bytes received successfully at different destinations.
 11.Create a new copy of droptail_vs_red.cc and change the queue to RED.
12.Run the experiment from step.4. to step.10.
13.Compare and contrast DropTail and RED queue techniques.
 a. What is the total no. of bytes received in Droptail queue technique?
 b. What is the total no. of bytes received in RED queue technique?
 c. What is the inference?

Experiment.2: Performance of RED for different link bandwidths and queue lengths

For a given network, the following parameters play a critical role in network congestion.
Traffic characteristics in source/destination hosts
1. Packet priority = Low, Medium, High
 2. Traffic Type: Data, Voice, Video
 3. Application Data Size: Distribution (Constant, Exponential, etc.), Application Data Size (1472
bytes, 512 bytes, etc.)

LBRCEPage 24

 4. Inter Arrival Time: Distribution (Constant, Exponential, etc.), Mean Inter Arrival Time (micro
seconds)

Link Properties
1. Distance (km)
2. Bit Error Rate (BER)
3. Physical Medium (CAT510 Mbps, E2, etc.)

 Router properties:
 1. Buffer size (KB): 8, 16, 32, etc.
 2. Scheduling Type: FIFO, Priority
3. Queue Technique: DropTail, RED

Steps in the experiment:
1. The code simulates the following network topology.

 Figure. 2. Topology
2. The bandwidth and delay of the bottleneck link is 10 Mbps and 10 ms. The traffic at source and
destinations are 8 Mbps, 5 Mbps, and 7 Mbps. Since, there are many sources passing through a
single route (as shown in the above figure), there is a huge drop in packets.
 3. Copy the file to ns3_home_folder/scratch/ directory.
4. Open a terminal and navigate to ns3_home_folder.
 5. Compile ns3 programs using the below command. ./waf
6. Run redqueue executable using the following command ./waf run RedQueueStats vis

LBRCEPage 25

 7. Simulator window will be opened on running the above command. Click “Simulate” button. 8.
Wait for the simulation to complete. Once the simulation is completed, close the window.
9. The terminal will show the total no. of dropped packets. The following information is displayed.
 a. Packets drop after crossing avg. threshold level (High prob.)
 b. Packets drop after crossing max. threshold level (QueueAvg > MaxQueue)
 c. Packets drop after crossing the queue length (Queue is full)
10.Change the bandwidth of the bottleneck link to 15 Mbps. Compile the code and run the
experiment.
 a. What is your observation for step.9
11.Change the bandwidth of the bottleneck link to 20 Mbps. Compile the code and run the
experiment.
 a. What is your observation for step.9
12.From the steps 9, 10, and 11
 a. What is the inference?
 b. What is the minimum and maximum threshold value?
13.Change the bandwidth of the bottleneck link to 2 Mbps. Default values of MinThreshold ,
MaxThreshold and QueueLimit are 5, 15 and 25. Change MinThreshold less than 5 and
MaxThreshold less than 15. Compile the code and run the experiment.
 a. What is your observation for step.9

Analyse the effect of broken links on routing table:
Routing is the process of selecting best paths in a network. In the past, the term routing was also
used to mean forwarding network traffic among networks. However this latter function is much
better described as simply forwarding. Routing is performed for many kinds of networks, including
the telephone network (circuit switching), electronic data networks (such as the Internet), and
transportation networks.
In packet switching networks, routing directs packet forwarding (the transit of logically addressed
network packets from their source toward their ultimate destination) through intermediate nodes.
Intermediate nodes are typically network hardware devices such as routers, bridges, gateways,
firewalls, or switches. General purpose computers can also forward packets and perform routing,
though they are not specialized hardware and may suffer from limited performance. The routing
process usually directs forwarding on the basis of routing tables which maintain a record of the
routes to various network destinations. Thus, constructing routing tables, which are held in the
router's memory, is very important for efficient routing
When applying link state algorithms, a graphical map of the network is the fundamental data used
for each node. To produce its map, each node floods the entire network with information about
the other nodes it can connect to. Each node then independently assembles this information into
a map. Using this map, each router independently determines the least cost path from itself to
every other node using a standard shortest paths algorithm such as Dijkstra's algorithm.

LBRCEPage 26

Experiment.3: Dynamic Global Routing
We will examine global routing in a mixed environment with Point to Point links and CSMA/CD
channel.
Copy the dynamic_global_routing.cc file from examples into scratch folder.
The following topology is created:

1. Run the simulation from ns3 home folder
 a. ./waf
 b. ./waf run globalrouting (use ‘vis’ to enable visualization)
 2. Data is transferred from n1 to n6. Identify n1 and n6 correctly from the visualization.
3. At presimulation time, global routes configured. Look for the following line in the code: aa
a.Ipv4GlobalRoutingHelper::PopulateRoutingTables ();
4. The shortest path from n1 to n6 is via the direct pointtopoint link. This will be the default choice.
 5. At time 1s, CBR traffic flow from n1 to n6 is started
6. At time 2s,the n1 pointtopoint interface goes down. Through what path will the packets get
diverted?
 a. Under what other circumstances (apart from the interface going down) could the path of the
packets dynamically change?
7. At time 4s, the n1/n6 interface is reenabled to up. Now what will be the path taken by the packets
between n1n6?
8. At time 6s, the n6n1 pointtopoint Ipv4 interface is set to down (note, this keeps the pointtopoint
link "up" from n1's perspective). Observe the change of path of the packets (NOTE: observe the
visualization as well as the corresponding pcap files)
 9. At time 8s, the interface comes up. The older path is restored.
10.At time 10s, the first flow is stopped.
11.At time 11s, a new flow started, but to n6's other IP address (the one on the n1/n6 p2p link)
12.At time 12s, the n1 interface down between n1 and n6 is put down. Packets will be diverted to
the alternate path
13.At time 14s, the n1/n6 interface is reenabled. This will change routing back to n1n6 since the

LBRCEPage 27

interface up notification will cause a new local interface route, at higher priority than global routing
14.At time 20s, the second flow stopped and simulation ends.

LBRCEPage 28

Experiment-4
Aim: To learn about broadcasting, multicasting, and bridging in a Local
AreaNetwork using ns-3.
First remove old .cc files from your scratch folder. Copy first.cc and second.cc from
examples->Tutorial into scratch folder.
Carrier Sense Multiple Access (CSMA)
Carrier Sense Multiple Access/Collision Detect (CSMA/CD) is the protocol for carrier transmission
access in Ethernet networks. On Ethernet, any device can try to send a frame at any time. Each
device senses whether the line is idle and therefore available to be used. If it is, the device begins
to transmit its first frame. If another device has tried to send at the same time, a collision is said to
occur and the frames are discarded. Each device then waits a random amount of time and retries
until successful in getting its transmission sent.
Experiment 1: One Point-to-Point link with one CSMA channel with four nodes

Figure.1. Default LAN Topology
In p oint2point-csma.cc file you have the topology as given above. This program builds a one point-
to-point channel from n 0 to one LAN segment over csma channel. But when you run point2point-
csma. cc program, ns3does not visualize it in the same way. The visualization by ns-3looks like the
figure below.

Figure.2. Simulation of LAN Topology

LBRCEPage 29

In the figure above, the dotted circle in the center is the CSMA channel. The top
most node is n0.

Pcap captures for the simulation are enabled by default.
 1. Do you see ARP communication in the Point-to-Point link?
 2. What about the CSMA LAN?
Write down your observations.

For the experiment above, extend it to create the topology given below:

Figure.3. Topology2

Experiment 2: IP broadcasting over two CSMA channels
Open the IpBroadcastCSMA.cc file. It uses the following topology:

Figure.4. Default Broadcast Topology

In the figure below, n0 is the node in the middle of the two CSMA channels. n0 originates UDP
broadcast to specified LAN segment. In the IpBroadcastCSMA.cc file, line 101 has OnOffHelper
which takes the IP address as a parameter. The code given to you has 1 0.1.3.255 as the IP address,
which is the broadcast IP of the CSMA channel at the bottom in the given figure. If you want n 0 to
broadcast to both CSMA channels, comment out line 101 and uncomment line 103. This will make
the broadcast IP as 255.255.255.255 .

Figure.5. Simulation of Broadcast Topology

LBRCEPage 30

Write down your observations.
Experiment 3 : IP multicasting over two CSMA channels
Open IpMulticastCSMA.cc file. It uses the following topology.

Figure.6. Default Multicast Topology

As given in line 101 of the code, n0 is the multicast source
Ipv4Address multicastSource(“10.1.1.1”)

This topology is similar to the previous one. n2is the node in the middle of the two CSMA
channels.

Figure.7. Simulation of Multicast Topology

Change the multicast source node to n3 . Send multicast data to nodes n0, n1 , and n4 .
Write down your observations.

LBRCEPage 31

Experiment 4: Bridging over CSMA and with one intermediate router
Open BridgingOneHop.cc file. It uses the following topology.

Figure.8. Default Bridging Network

In the figure below, n2 is the router node in the middle. Application data is transmitted from n0 to
n1 and from n3 to n0 . The Data rate for n0>n1 transmission is 500Kb/s (see line 165 of code), and
Data rate for n3>n0 transmission is 100Kb/s (see line 181 of code).
In the figure below, n2 is the router node in the middle. Application data is transmitted from n0 to
n1 and from n3 to n0 . The Data rate for n0>n1 transmission is 500Kb/s (see line 165 of code), and
Data rate for n3>n0 transmission is 100Kb/s (see line 181 of code)

Figure.9. Simulation of Bridging Network

This shows two broadcast domains, each interconnected by a bridge with a router node
interconnecting the Layer2 broadcast domains.

LBRCEPage 32

While running the simulation, observe the ‘interface statistics’ (right click on the node) for n0 and
the bridging node n5. Can you observe ‘IPv4 Routing Table’ for the bridging nodes (n5 and n6)?
 Write down your observations.

Figure.10. Observing Node statistics

At n5, we can observe the following statistics:

Figure.11. Statistics for node 5

The Received bytes at interface 1 are maximum. Can you correctly identify interface 1 of node 5 on
your visualization? Can you identify its interface 2 as well? Why does interface 3 has no Transmitted
or Received bytes?
 Write down your observations.

LBRCEPage 33

Experiment-5
Aim: To learn about Wi­fi and Mobile Ad­hoc topologies with ns­3.

IEEE 802.11 wireless LANs use a media access control protocol called Carrier Sense

Multiple Access with Collision Avoidance (CSMA/CA).

Wi­Fi systems are half duplex shared media configurations, where all stations transmit

and receive on the same radio channel. The fundamental problem this creates in a radio system

is that a station cannot hear while it is sending, and hence it is impossible to detect a collision.

Because of this, the developers of the 802.11 specifications came up with a collision avoidance

mechanism called the Distributed Control Function (DCF).

According to DCF, a Wi­Fi station will transmit only if it thinks the channel is clear. All

transmissions are acknowledged, so if a station does not receive an acknowledgement, it

assumes a collision occurred and retries after a random waiting interval.

Experiment 1:

1. third.cc file creates the following topology:

In ns­3, the visualization will appear similar to the figure below:

LBRCEPage 34

You may increase the number of Wi­fi devices by specifying it at run­time in the following

manner:

./waf ­­run 'wifi­example ­­nWifi=10' ­­vis

(18 is the hard­coded upper limit)

You may observe the pcap files generated at different nodes. Packet captures are enabled in

the line numbers 172­174 of the code:

pointToPoint.EnablePcapAll ("wifi­p2p"); phy.EnablePcap ("wifi­ap",

apDevices.Get (0));

csma.EnablePcap ("wifi­csma", csmaDevices.Get (0), true);

Since no data applications are enabled, you do not see any data in the pcap files apart from

broadcast messages by the Wi­fi A.P. In pcap files generated at the A.P., can you observe the

beacon frames and acknowledgements?

2. Create a UDP Echo Client­Server application for the above topology. The last node on the

CSMA LAN should be your Echo Server. Configure any of the Wi­fi devices as your Client.

Comment out line number 152­166 to implement the above.

Observe UDP server port number and other client attributes.

After running the Echo Client­Server application, observe the fresh pcap files generated.

Experiment 2: Extending the previous topology

Extend the above topology so as to create a Wi­fi Access Point on one of the CSMA LAN nodes.

Connect three Wi­fi nodes to this Access Point as shown in the figure below:

LBRCEPage 35

Some hints to help you extend the topology:

● Do not install the Internet stack twice on any node.

● Remember to give your new Wi­fi Access Point a SSID which is different from the

previous one.

● The Wi­fi devices and their Access Point must be in the same IP subnet.

● In order to have your new Wi­fi nodes physically apart from the old nodes, you will

need to set appropriate values for the SetPositionAllocator method of the

MobilityHelper class.

3. Further, modify your UDP Echo Server­Client application by configuring the Server as a Wi­fi

device on the new A.P.. (Hint: the present code will not suffice for this implementation

because the Wi­fi devices have no ‘IPv4Interface’ associated with them)

4. The final topology will look like the figure below:

5.

6.
7.

8. Observe the fresh pcap files generated. You should be able to see data transfer between the

two Wi­fi devices.

AODV (Ad­hoc On­Demand Distance Vector)

Ad hoc On­Demand Distance Vector (AODV) Routing is a routing protocol for mobile ad hoc

networks (MANETs) and other wireless ad hoc networks.

The AODV Routing Protocol uses an on­demand approach for finding routes, that is, a route is

established only when it is required by a source node for transmitting data packets. It employs

LBRCEPage 36

destination sequence numbers to identify the most recent path. In AODV, the source node

and the intermediate nodes store the next­hop information corresponding to each flow for

data packet transmission. In an on­demand routing protocol, the source node floods the

RouteRequest packet in the network when a route is not available for the desired destination.

It may obtain multiple routes to different destinations from a single RouteRequest. The major

difference between AODV and other on­demand routing protocols is that it uses a destination

sequence number (DestSeqNum) to determine an up­to­date path to the destination. A node

updates its path information only if the DestSeqNum of the current packet received is greater

or equal than the last DestSeqNum stored at the node with smaller hopcount.

Experiment 3: Understanding the AODV routing protocol for Mobile adhoc networks
The My_aodv.cc file generates a topology of 12 mobile nodes, 4 in each line.

The nodes are separated by a distance ‘step’ specified in the code. The initial value given to

‘step’ is 100m. The step variable can be varied from 80 to 120. As the ‘step’ size increases, you

will observe that neighboring nodes are not able to communicate to each other directly (the

link between then breaks).

Thus the nodes will use AODV routing to figure out alternate routing paths. Observe the

aodv.routes file, which gives the AODV routing table at each node.

LBRCEPage 37

References

1. http://www.nsnam.org/

2. http://en.wikipedia.org/wiki/Wi­Fi
http://en.wikipedia.org/wiki/AODV

http://www.nsnam.org/
http://en.wikipedia.org/wiki/Wi-Fi
http://en.wikipedia.org/wiki/AODV

LBRCEPage 38

Experiment-6

AIM:-To Introduce Socket Programming in TCP and UDP

TCP Socket Programming:

A socket is the mechanism that most popular operating systems provide to give programs access to the
network. It allows messages to be sent and received between applications (unrelated processes) on
different networked machines. The sockets mechanism has been created to be independent of any specific
type of network.

A socket address is the combination of an IP address and a port number, much like one end of a
telephone connection is the combination of a phone number and a particular extension. Based on this
address, internet sockets deliver incoming data packets to the appropriate application process or thread.

An Internet socket is characterized by a unique combination of the following:

1. Local socket address: Local IP address and port number

2. Remote socket address: Only for established TCP sockets. This is necessary since a TCP server may

serve several clients concurrently. The server creates one socket for each client, and these sockets

share the same local socket address from the point of view of the TCP server.

3. Protocol: A transport protocol (e.g., TCP, UDP, raw IP, or others). TCP port 53 and UDP port 53 are

consequently different, distinct sockets.

Tools used: gedit, terminal

Experiment 1: Working of a TCP concurrent server

1. Create “tcp_client.c” and “tcp_server.c”.

2. Compile server first (as shown below). gcc -o server tcp_server.c

3. Similarly, compile the client using the following command. gcc -o client tcp_client.c

4. Run the server using the below command. After running, the server would wait for an incoming

connection (as shown in the Figure.1)

./server

Fig1. Server waiting for connections

2

5.On separate terminal window, run the client using
./client <server IP or localhost>

Fig2. Client waiting for User input

6.Enter a character as input and it will be echoed back by the server (Refer Figure.3)

Fig3. Client input-output

Fig4. Server output

7.To stop the server and client, click “Ctrl +C” in their respective terminals. (To start the server again, wait
for a couple of seconds).

Experiment 2: Modification of the TCP Client-Server programs

1. Download “tcp_client.c” and “tcp_server.c” from the CMS Website

2. Modify the filenames as “tcp_client_n.c” and “tcp_server_n.c”

3. Modify the program such that the client sends a string as a message to the server. Make sure the

server echoes back the same string. (Hint: use buffer to handle the string exchanges by server-client

and modify read and write functions).

4. Compile server first (as shown below). gcc -o server_ntcp_server_n.c

5. Similarly, compile the client using the following command. gcc -o client_ntcp_client_n.c

6. Run the server using the below command.

./server_n
7. The server will start, waiting for a client to connect. On a separate terminal window, run the client

using

./client_n <server IP or localhost>

3

8. Type “hi I am client!” in the client terminal window. As you see the figure.6, the same message is

echoed back from the server.

Fig5. Client sending string

Fig6: Server receiving String

9. To stop the server and client, click “Ctrl +C” in their respective terminals. (To start the server again,

wait for a couple of seconds).

Questions

Answer the following questions based on your understanding of the experiments.
1. Which field in the socket function specifies the type of transport layer protocol (like TCP, UDP, etc.)?

2. What is the IP address and port no. of the server?

3. What is the purpose of bind function?

4. Which of the functions mentioned below are blocking calls?

a. socket

b. connect

c. bind

d. listen

e. accept

f. send

g. recv

h. close

 5. Which function in the client program involved in connection establishment?

 6. Which function in the server program involved in connection establishment?
7. send and recv functions are analogous to writing to a file and reading from a file. (T/F)

8. What is a concurrent server?

4

UDP Socket Programming:

A datagram socket is a type of connectionless network socket, which is the sending or receiving point
for packet delivery services. Each packet sent or received on a datagram socket is individually addressed
and routed. Multiple packets sent from one machine to another may arrive in any order and might not
arrive at the receiving computer.

A datagram socket provides a symmetric data exchange interface without requiring connection
establishment. Each message carries the destination address.

Tools used: gedit, terminal

Experiment 3: Working of an UDP Client-Server program

1. Download “udp_client.c” and “udp _server.c” from the CMS Website.

2. The programs are partially complete. Complete the rest of the program, so that, it compiles and

runs successfully (Implement echo server described in Experiment.2.)

3. Compile server first (as shown below). gcc -o udp_serverudp_server.c

4. Similarly, compile the client using the following command. gcc -o udp_clientudp_client.c

5. Run the server using the below command.

./udp_server
6. The server will start, waiting for a client to connect. On a separate terminal window, run the client

using

./udp_client <server IP or localhost>

7. Enter a character as input and it will be echoed back by the server (Refer Figure.7)

Fig7: Client sending and receiving a character

8. To stop the server and client, click “Ctrl +C” in their respective terminals. (To start the server again,

wait for a couple of seconds).

Experiment 4: Modification of the UDP Client-Server programs

1. Download “udp_client.c” and “udp_server.c” from the CMS Website

2. Modify the filenames as “udp_client_n.c” and “udp_server_n.c”

5

3. Modify the program such that the client sends a string as a message to the server. Make sure the

server echoes back the same string. (Hint: use buffer to handle the string exchanges by server-client

and modify read and write functions).

4. Compile server first (as shown below). gcc -o udp_server_nudp_server_n.c

5. Similarly, compile the client using the following command. gcc -o udp_client_nudp_client_n.c

6. Run the server using the below command.

./udp_server_n
7. The server will start, waiting for a client to connect. On a separate terminal window, run the client

using

./udp_client_n <server IP or localhost>

8. Type “hello” in the client terminal window. As you see the Figure.8, the same message is echoed

back from the server.

Fig8: Client sending and receiving a string

9. To stop the server and client, click “Ctrl +C” in their respective terminals. (To start the server again,

wait for a couple of seconds).

Questions

Answer the following questions based on your understanding of the experiment.
1. Order the sequence of operations in an UDP socket communication.

Client functions Server

functions

Close Close

Socket Socket

Sendto Sendto

Recvfrom Recvfrom

 Bind

2. What is the difference between UDP and TCP echo servers?

References

➢ Unix Manual: http://man7.org/linux/man-pages/man2/socket.2.html

6

Experiment-7

Aim: Observations of Transmission Control Protocol (TCP) Connection states,

Flags and Flow control.

TCP Connection States:

TCP protocol operations may be divided into three phases. Connections must be

properly established in a multi-step handshake process (connection establishment) before

entering the data transfer phase. After data transmission is completed, the connection

termination closes established virtual circuits and releases all allocated resources.

A TCP connection is managed by an operating system through a programming interface

that represents the local end-point for communications, the Internet socket. During the

Fig.1: TCP State Diagram

lifetime of a TCP connection the local end-point undergoes a series of state changes:

Tools used: Wireshark, netstat.

7

Experiment 1: Observation of TCP connection states

1. Download “tcp_client.c” and “tcp_server.c” from the CMS Website

2. Compile server first (as shown below).

gcc -o tcp_server tcp_server.c

3. Similarly, compile the client using the following command.

gcc -o tcp_client tcp_client.c

4. Run the server using the below command.

./tcp_server

5. The server will start, waiting for a client to connect. On a separate terminal window, run the client
using

./tcp_client <IP address of your neighbour>

6. Enter a character as input and it will be echoed back by the server. Use netstat to check

the TCP connection state in client PC and server PC separately.

a. What is the connection state in the client machine?

b. What is the connection state in the server machine?

7. Stop client and server programs. Immediately, start the server again.

a. What is the observation?
8. Connection Establishment states (LISTEN, SYN_SENT, SYN_RCVD)

a. LISTEN state

Start the server in your neighbor PC.

i. What is the TCP connection state (observed using netstat)?

Fig. 2: LISTEN state on Server side

9. Connection Termination states

a. FIN_WAIT2 state and CLOSE_WAIT state

Server or Client does close (CTRL+C)

i. What is the connection state in the client machine?

8

ii. What is the connection state in the server machine?

Fig. 3: FIN_WAIT2 state on Server side (172.16.90.4)

Fig. 4: CLOSE_WAIT state on Client side (172.16.90.5)

a).TIME_WAIT

Connect to the Server with two (or more clients). Stop the server

program (normal close). Server goes to FIN_WAIT2. Then, terminate

your client programs.

i. Now, what is the connection state in the Server machine?

 Fig. 5: TIME_WAIT state at Server

b. FIN_WAIT1

Terminate the server while the client is still receiving data from the server

(HINT: sending a single character will not give such behavior. You will need to send

lot more data). FIN_WAIT1 state will observed at server.

9

2. Fig. 6: FIN_WAIT1 at Server
3. Reset Connection

Try sending data to Server when it has been terminated. RST packet is transmitted to client.

a. Find the RST packet in Wireshark (Refer Figure 7 below)

Fig. 7: Packet from Server (on port 7777) to client (on port 46277) with RST flag set

4. The Use of PUSH Flag

a. Observe the data packets. Since, the amount of data is too low (1 byte) the TCP

uses PUSH protocol to send the data. Figure 8 shows the PUSH flag being set in

the TCP packet (TCP Flags)

10

Fig. 8: Use of PSH to send data

TCP Header Fields:

The Transmission Control Protocol (TCP) is one of the core protocols of the Internet

protocol suite (IP), and is so common that the entire suite is often called TCP/IP. TCP provides

reliable, ordered, error-checked delivery of a stream of octets between programs running on

computers connected to a local area network, intranet or the public Internet. It resides at the

transport layer.

Tool used: Wireshark

Experiment 2: Observation of fields in a TCP packet header

1. Close all the browsers.

2. Run Wireshark in non-promiscuous mode with root privileges.

3. Open the website http://lbrce.ac.in/ in a browser window.

4. Stop Wireshark and observe the packets.

How to differentiate a control packet and a data packet?

5. Connection Establishment packets

a. Find the SYN packet in the TCP flow. The below diagram (Figure 9, see packet

number 6) shows the TCP SYN flag set as in a Wireshark window.

Who sends the SYN packet?

What is the HLEN value for the SYN message?

http://www.bits-pilani.ac.in/
http://www.bits-pilani.ac.in/

11

Fig. 9: SYN/ SYN-ACK /ACK packets

a. Find the SYN-ACK packet in the TCP flow. The above diagram (Figure 9, see

packet number 7) shows the SYN-ACK packet.

Who sends the SYN-ACK packet?

Find the first ACK packet from the server (the website). The below diagram (Figure 10) shows the TCP flags
as in a Wireshark window.

Fig. 10: Data ACKed by Server

a. Check if the last ACK in connection establishment (SYN-SYN ACK-ACK) is piggy

backed with data packets?

6. Connection Termination packets

a. Find the FIN packet in the TCP flow.

b. Find the ACK or FIN-ACK packet from the server (the website).

c. The below diagram (Figure. 11) shows the TCP FIN flags as in a Wireshark window.

http://wiki.wireshark.org/

12

Fig. 11: Connection termination with FIN flags

1. Urgent flag

a. In the Wireshark capture of your Client-Server module, find the packet(s)

with Urgent flag set. (Figure 12)

Fig. 12: URG flag set

2. Source port/Destination Port

The below figure (Figure. 13) shows the source port and destination port of a

packet that travels from the web browser to the server.

Fig. 13: Source port= 49147, Destination port= 80

13

a. Does the destination port number change for all packets from a client to a server?

b. For a given connection, will the source port number change for all packets from a client to
a server?

c. What is the source and destination port number of a packet that traverses from

the server to the client machine?

3. Sequence Number/Acknowledgement Number

Observe the sequence number and acknowledgement number in connection
establishment packets.

a. Write down the sequence number and acknowledgement number for the following
packets.

▪ SYN packet

▪ SYN-ACK packet

▪ ACK packet

 b.What is the value of Window Size in each of the packets in question (a)

1. Round Trip Time Measurement

a. Go to the SYN packet in the TCP flow. Find the “timestamps” field in TCP

Options (Refer Figure 14 below). The value of TSecr should be 0.

Fig. 14: TSecr value = 0

b.Go to the SYN-ACK packet in the TCP flow. The “timestamps” field should be similar to the below figure
(Figure. 15). What is the value of TSecr?

14

Fig. 15: TSecr value for SYN-ACK

The round trip time is calculated based on the receipt of SYN-ACK packet from the server.

When the client receives the ACK packet, it subtracts the received TSecr from the current clock

(OS Clock) to obtain the round trip clock difference.

Now, RTT = Round Trip Clock Difference * Clock Period

2. Flow Control

a. In your Client-Server pcap, can you identify TCP out-of-order packets and TCP Dup ACKs?

Fig. 16: TCP DUP ACKs and TCP out of order packets

2

b. Window Size scaling

Fig. 17: Scaling window sizes

References

➢ Unix Manual: http://man7.org/linux/man-pages/man2/socket.2.html

➢ Wireshark User’s Guide: www.wireshark.org/docs/wsug_html_chunked/

➢ Wireshark Wiki Help: wiki.wireshark.org/

http://man7.org/linux/man-pages/man2/socket.2.html
http://www.wireshark.org/docs/wsug_html_chunked/
http://wiki.wireshark.org/

3

Experiment-8

Aim: To learn Transmission Control Protocol (TCP) Flow Control, Error Control, and

Congestion Control.

TCP Flow Control:

Automatic Repeat reQuest (ARQ), also known as Automatic Repeat Query, is an error-

control method for data transmission that uses acknowledgements (messages sent by the

receiver indicating that it has correctly received a data frame or packet) and timeouts (specified

periods of time allowed to elapse before an acknowledgment is to be received) to achieve

reliable data transmission over an unreliable service. If the sender does not receive an

acknowledgment before the timeout, it usually re-transmits the frame/packet until the sender

receives an acknowledgment or exceeds a predefined number of re-transmissions.

Selective Repeat is part of the automatic repeat-request (ARQ). With selective repeat,

the sender sends a number of frames specified by a window size even without the need to wait

for individual ACK from the receiver as in Go-back N ARQ. However, the receiver sends ACK for

each frame individually, which is not like cumulative ACK as used with go-back-n. The receiver

accepts out-of-order frames and buffers them. The sender individually retransmits frames that

have timed out.

Tools used: Wireshark

Experiment 1: Demonstration of TCP Flow Control techniques

1. Open capture.pcap file in Wireshark.

2. Each and every ACK packet should have ACK flag bit set. Check if it is true for all the ACK packets.

3. A SACK reports a block of bytes that is out of order. Find a couple of packets with SACK

option set? Write down the sequence number of the packets carrying SACK options?

4. Identifying zero window size packets (figure above)

Go to Analyze->Expert Info composite. Under Warnings tab you should be able to see

packet numbers which had zero Window.

4

5

6

To identify zero window and window updates graphically:

Go to Statistics → IO graphs. For X axis, choose the Tick interval as 0.1 second and Pixels

per tick as 5. For Y axis, choose Unit as Advanced. Plot graphs for tcp.analysis.zero_window and

tcp.analysis.window_update as shown above. To generate the graph(s), click on the 'Graph x'

(x=1,2,...) button at the left.

Similarly, you can generate a graph to observe TCP full window with zero window and window
update.

Modify arguments as shown below:

5. Response time IO Graphs (Inter-arrival time)

To observe time delay between packets, go to Statistics → IO graphs. For Y axis, choose

the Unit as Advanced. Generate graph for time delay between packets as shown below. Large

spike in the graph indicates large delays in time.

7

6. TCP Stream Graphs

a. Round Trip Time Graph

Filter packets going from Server → Client:

Go to Statistics → TCP stream graphs →Round Trip Time graph

In the graph shown below, you can see a spike occurring for RTT. The explanation for this

behavior is that the graph was obtained for a capture done with the Server on a laptop with a

wi-fi connection. The Server was deliberately moved away from the wi-fi access point in a zone

of weak network strength, which led to increased RTT values of the packets.

a. Throughput Graph

Filter packets going from Server-> Client:

Go to Statistics-> TCP stream graphs->Throughput graph

8

b. Window Scaling Graph

Filter packets going from Client->Server:
Go to Statistics-> TCP stream graphs->Window Scaling Graph

9

For better observations, you may zoom in the graph (Click the middle button on your

mouse at the area which you want to zoom)

Window scale factors can be observed in the SYN packets sent from each side at the beginning of the
TCP flow.

TCP Error Control:

There are six important rules that define the generation of an acknowledgement. The

rules are given below.

Tool used: Wireshark

Experiment 2: Observation of Error Control in TCP protocol
a. Rule1: Normal TCP Operation

b. When end A sends a data segment to end B, it must include (piggyback) an

acknowledgement that gives the next sequence number it expects to receive.

This rule decreases the number of segments needed and therefore reduces

traffic.

c. Can you see acknowledgement packets that are piggybacked?

10

2. Rule2: Delayed ACK

a. When the receiver has no data to send and it receives an in-order segment (with

expected sequence number) and the previous segment has already been

acknowledged, the receiver delays sending an ACK segment until another

segment arrives or until a period of time (normally 500ms) has passed.

b. We will observe this behavior along with rule 3.

3. Rule3: Preventing unnecessary retransmission of data segments.

a. When a segment arrives with a sequence number that is expected by the receiver,

and the previous in-order segment has not been acknowledged, the receiver

immediately sends an ACK segment.

b. Find the ACK packets in the pcap file which correspond to delayed ACK (rule 2)

and rule 3. (See the two images below)

11

1. Rule4: Out-of-order sequence numbers

a. When a segment arrives with an out-of-order sequence number that is higher

than expected, the receiver immediately sends an ACK segment announcing the

sequence number of the next expected segment.

b. Find the out-of-order sequence numbered packets in the pcap file.

http://wiki.wireshark.org/

2. Rule5: Missing segments

a. When a missing segment arrives, the receiver sends an ACK segment to announce

the next sequence number expected. This informs the receiver that segments

reported missing has been received.

b. Find the transmission of missing segments in the pcap file (see the last packet in

the figure below).

c. Can you see their corresponding ACKs in the pcap file?

1. Rule6: Duplicated segments

a. If a duplicate segment arrives, the receiver discards the segment, but

immediately sends an acknowledgment indicating the next in-order segment

expected.

b. Find the transmission of duplicated segments in the pcap file.

c. Do you see TCP Fast Retransmit happening after Dup ACKs?

8 | P a g e

TCP Congestion Control:

Congestion can occur when data arrives from a fast network to a slower network.

Congestion can also occur when multiple input streams arrive at a router whose output capacity

is less than the sum of the inputs. TCP is mainly used to avoid congestion in the network. To

avoid the congestion, some of the packets are dropped in the network. This may lead to

retransmission of data packets.

Tool used: wireshark, tracepath

9 | P a g e

Experiment 3: Demonstration of Congestion Control Techniques in TCP protocol

1. Congestion control

In our Client-Server module, congestion can be observed at the Server when multiple

clients try to connect to it one after another. The figure below explains the fair share behavior

of TCP. You can make these observations yourself by running a concurrent server and connecting

multiple clients to it (with some small time difference- say a few seconds).

2. Find Path MTU using Tracepath tool

User-Datagram Protocol (UDP):

User-Datagram Protocol is a transport layer protocol used by many internet applications.

In UDP, there is no handshaking between sending and receiving entities. For this reason, UDP is

said to be connectionless.

10 | P a g e

Checksum is the 16-bit one's complement of the one's complement sum of a pseudo header

of information from the IP header, the UDP header, and the data, padded with zero octets at the

end (if necessary) to make a multiple of two octets. In other words, all 16-bit words are summed

using one's complement arithmetic. The sum is then one's complemented to yield the value of the

UDP checksum field.

If the checksum calculation results in the value zero (all 16 bits 0) it should be sent as the

one's complement (all 1s).

Tool used: Wireshark

Experiment 4: Observation of UDP Header fields

1. Close all the browsers.

2. Run Wireshark in non-promiscuous mode with root privileges.

3. Download “udp_client.c” and “udp_server.c” from the CMS Website

4. Compile server first (as shown below).

gcc -o udp_server udp_server.c

5. Similarly, compile the client using the following

command. gcc -o udp_client udp_client.c

6. Run the server using the below command.

./udp_server

7. The server will start, waiting for a client to connect. On a separate terminal window, run the client
using

./udp_client 127.0.0.1

8. Payload size calculation

a. Observe any UDP packet. The total length of UDP is given by the length of the

header fields (8 bytes) plus the length of the data (1 bytes in this case).

Answer the following questions based on your understanding of the above experiment.

1. What is the source port number?

2. What is the destination port number?

11 | P a g e

3. What is the total length of the user datagram?

4. What is the length of the data?

References

➢ Wireshark User’s Guide: www.wireshark.org/docs/wsug_html_chunked/

http://www.wireshark.org/docs/wsug_html_chunked/

12 | P a g e

Experiment-9

Aim: To give an Introduction to Wireshark &tcpdump, and observation of packets

in a LAN network.

Packet Sniffer:

The basic tool for observing the messages exchanged between executing protocol entities is

called a packet sniffer. As the name suggests, a packet sniffer captures (“sniffs”) messages being

sent/received from/by your computer; it will also typically store and/or display the contents of

the various protocol fields in these captured messages. A packet sniffer itself is passive. It

observes messages being sent and received by applications and protocols running on your

computer, but never sends packets itself. Similarly, received packets are never explicitly

addressed to the packet sniffer. Instead, a packet sniffer receives a copy of packets that are

sent/received from/by application and protocols executing on your machine.

Figure1:PacketSnifferInternalStructure

We will be using the Wireshark packet sniffer [http://www.wireshark.org/] for these labs,

allowing us to display the contents of messages being sent/received from/by protocols at

different levels of the protocol stack. (Technically speaking, Wireshark is a packet analyzer that

uses a packet capture library in your computer). Wireshark is a free network protocol analyzer

that runs on Windows, Linux/Unix, and Mac computers. It’s an ideal packet analyzer for our

labs–it is stable, has a large user base and well-documented support includes a user guide.

(www.wireshark.org/docs/wsug_html_chunked/),manpages(www.wireshark.org/docs/man-

pages/),anda detailed FAQ (www.wireshark.org/faq.html), rich functionality that includes the

http://www.wireshark.org/
http://www.wireshark.org/docs/wsug_html_chunked/)
http://www.wireshark.org/docs/man-pages/)
http://www.wireshark.org/docs/man-pages/)
http://www.wireshark.org/faq.html)

13 | P a g e

capability to analyze hundreds of protocols, and a well-designed user interface. It operates in

computers using Ethernet, Token-Ring, FDDI,

serial(PPPandSLIP),802.11wirelessLANs,andATMconnections(iftheOSonwhichit's running allows

Wireshark to do so).

 Figure2:Wireshark Snapshot Ubuntu

14 | P a g e

Experiment1: Introduction to Wireshark

1. Install Wireshark using the following command. If already installed, then please go to

step.2.(One can also install from Ubuntu Software Center).

Sudo apt-get install wireshark

2. OneneedsadministratorprivilegestoworkwithWireshark.RunWiresharkwithsudo

privileges (Type “sudo wireshark” in the Terminal).

3. Goto Capture->Optionsmenu.Check“eth0” interface and uncheck all other interfaces.

Uncheck “Use promiscuous mode on all interfaces”.

4. Do packet capturing by clicking Capture->Start button. Now, the captured packets are

shown in the center window. Stop capture (Capture->Stop button).

o What is promiscuous mode of operation?

5. Filters–Therearedisplayfiltersandcapturefilters.Displayfilterscanbeusedonalready

captured packets. Specify “tcp” in the display filter and press “Apply”.

o What is the observation?

6. Capturefiltersisusedtofilteranynewincoming/outgoingpackets.Capturefilterscanbe

specified in Capture->Options by typing in “Capture Filter” textbox.

7. Coloring rules–Depending on the protocol(IP,TCP,ARP,etc.)the color of the packet is

different. These rules can be changed accordingly (View->Coloring Rules…).

8. Goto capture->interfaces. This will show all the interfaces available in the system.

o How many interfaces does your system have?

o Identify the IPaddress of “lo” interface.

9. Saving the output while capturing: After stopping the capture, do it from File->SaveAs.

o Open try to open the pcap file in Wireshark.

15 | P a g e

Experiment 2: Introduction to tcpdump

Tcpdump is a common packet analyzer that runs under the command line. It allows the user to intercept
and display TCP/IP and other packets being transmitted or received over a network to which the computer
is attached. Distributed under theBSD license, tcpdump is free software. Tcpdump works on most Unix-like
operating systems: Linux, Solaris, BSD, OS X, HP-UX and AIX among others. In those systems, tcpdump uses
the libpcap library to capture packets. The port of tcpdump for Windows is called WinDump; it uses
WinPcap, the Windows port of libpcap.

Figure3:tcpdump snapshot

If tcpdump is not already installed, run the below command to install it.

Sudo apt-get update
Sudo apt-get install tcpdump

1. Run tcpdump (with sudo privileges). Captured packets are displayed in each line (with

minimal information).

2. Explore the various options in tcpdump

o –i=>used to specify the interface to listen on(example:-ieth0)

o –c => used to limit the total number of packets captured (example: -c 100 will

capture100 packets and will stop)

o –p=>run in non-promiscuous mode

o –A=>displays the packets in ASCII format(-XXtodisplayinHEXformat)

o –D=>lists only the interfaces

o –w=>capture and write to a file(example:-wsample.pcap)

o tcp=>capture only TCP packets

16 | P a g e

o port<num>=>capture from a specific port no.

o src<IP add#> => capture from specified source address. Try to differentiate sent

and received packets.

o dst<IP add#> => capture from specified destination address. Try to differentiate
sent and received packets.

17 | P a g e

Experiment3: Observation of packets in a LAN network

 Figure4: A part of the BITS Hyderabad network

18 | P a g e

1. Close all browsers. Open a browser window and clear browser cache.

2. To view arp cache (On your Terminal: arp-a) (It displays MAC addresses, IP addresses,

interface names). Depending on the subnet, the IP addresses of Cyberoam, default gateway,

and DNS server will be shown.

3. Clear your system’s ARP cache(On your Terminal: ipneigh flushall)

4. Put the eth0 interface down using ifconfig down(as explained in previous lab session)

5. Launch tcpdump along with ifconfig up(with sudo privileges).

o sudo ifconfig eth0 up; sudo tcpdump -i eth0 c 1000 p w sample.pcap

o Open a couple of websites in your browser(ex.google.com, yahoo.com)

o Wait for tcpdump to stop.

6. Open sample.pcap file in Wireshark.

7. Observe on Wireshark how your system receives an IP address from the DHCP service. Identify

the DHCP server’s IP address.

8. ObservetheARPpacketsbeingsent.IdentifytheIPandMACaddressofyourdefaultgateway.

9. Observe the DNS query being made to resolve the IP address of the website you visited.

Identify the DNS server which responded to you.

10. By observing the packets in Wireshark, identify your own IP address and the IP address of the

website you visited.

11. Explore Statistics->Endpoints to identify entities involved in capture.

o Differentiate for the rnet,IP,TCP,UDP etc.,

12.ExploreStatistics->Conversations to cover flows(pair of endpoints)

o Observer different tabs(Ethernet,IP,TCP,UDPetc.).

o SortondifferentcolumnsinTCP–e.g.Duration,Packets,AddressA,RelStartetc.
You may also experiment with “FollowStream” button on the popup dialog which adds a Display filter

19 | P a g e

13.Explore Statistics->IOGraph for complete communication, and after filtering for TCP

communication.

o Compare two TCP flows–e.g.stream6 and 4 below.

o Observe the time slider below the graph.

20 | P a g e

14.ExploreStatistics->FlowGraphtounderstandsequenceofeventsforthefilteredcapture.

References

❖ WiresharkUser’sGuide:www.wireshark.org/docs/wsug_html_chunked/

❖ WiresharkWikiHelp:wiki.wireshark.org/

❖ Tcpdumpdocumentation:www.tcpdump.org/#documentation

http://www.google.com/url?q=http%3A%2F%2Fwww.wireshark.org%2Fdocs%2Fwsug_html_chunked%2F&sa=D&sntz=1&usg=AFQjCNHmIPDZSzqJwe2WL5HhiL7sT8Hw3A
http://www.google.com/url?q=http%3A%2F%2Fwiki.wireshark.org%2F&sa=D&sntz=1&usg=AFQjCNEkoI9Ytw8QqucPhDtudEg1yDY3Ow
http://www.tcpdump.org/#documentation

21 | P a g e

Experimet-10

Aim: To analyze HTTP packets using Wireshark tool, and understand the

records returned by a DNS server.

HTTP (Hypertext Transfer Protocol):

The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed,

collaborative, hypermedia information systems. It is the foundation of data communication for

the World Wide Web. Hypertext is structured text that uses logical links (hyperlinks) between

nodes containing text. HTTP is the protocol to exchange or transfer hypertext.

HTTP functions as a request-response protocol in the client-server computing model. A

web browser, for example, may be the client and an application running on a computer hosting

a web site may be the server. The client submits an HTTP request message to the server. The

server returns a response message to the client. The response contains completion status

information about the request and may also contain requested content in its message body.

Tools used: Wireshark

Experiment 1: Working of HTTP

1. Run Wireshark with sudo privileges. Start capturing in non-promiscuous mode.

2. Start up your web browser. Next, enter into your browser http://timesofindia.indiatimes.com.

3. Wait until the page is fully loaded. Now, stop the capture. Is your browser running HTTP version

1.0 or 1.1? What version of HTTP is the server running? (Refer Figure.1.)

 Figure.1. HTTP Request and Responses

http://timesofindia.indiatimes.com/

22 | P a g e

4. Type “http” in the display-filter-specification window, so that only captured HTTP

messages will be displayed later in the packet-listing window. A couple of the responses

would have a response code of 304 (Not modified). What does the “Last-Modified” field

imply? (Refer Figure.2.)

Figure.2. HTTP Not Modified page

5. Type “http.response.code==200” in the display-filter-specification window. Response

code of 200 implies that HTTP request got processed successfully and HTTP response is

sent to the browser window. You can explore different response codes like 304 (not

modified), 404 (not found) etc. (Refer Figure.3.)

Figure.3. HTTP Response Code

6. Type “http.cookie” in the display-filter-specification window.

A cookie is a small piece of data sent from a website and stored in a user's web browser

while the user is browsing that website. Every time the user loads the website, the

browser sends the cookie back to the server to notify the website of the user's previous

activity. (Refer Figure.4.)

23 | P a g e

Figure.4. HTTP Cookie

7. Persistent v/s Non-Persistent HTTP connections. Do you see Connection: keep-alive set in

your packet captures?

8. HTTP proxy set-up (Work in a team of two. First member will install proxy server and other

will connect from a client)

i. Install tinyproxy in Ubuntu (In the terminal: sudo apt-get install tinyproxy)

ii. Open tinyproxy.conf file using vi or gedit (In the terminal: sudo vi /etc/tinyproxy.conf)

iii. Uncomment the line “Allow 172.16.0.0/12” (Refer the figure below). By this, you

are allowing anyone on 172.16.xx.yy to connect to your machine. Alternatively you

may restrict access to one or few machines. To allow access to only your client,

type the client machine’s IP address (add the following entry in the file: Allow <<IP

of client>>) if you choose to do this, DO NOT uncomment the entry which was

specified above.

iv. Save the file and exit.

24 | P a g e

Figure.5. Tinyproxy configuration file

Now, restart Tinyproxy for the changes to take place. In the terminal: sudo /etc/init.d/tinyproxy stop
sudo /etc/init.d/tinyproxy start

Default port which is used by Tinyproxy is 8888.
Do the following on the other teammate’s PC (i.e., the client):
In Firefox, go to Edit → Preferences → Advanced tab →Network tab → Click on Settings
→Check ‘Manual proxy configurations’ →enter IP of proxy server and port (default port is 8888).

25 | P a g e

Figure.6. Firefox Settings

Now, on your client’s Firefox, connect to www.google.com, and capture packets on Wireshark (i)

Firstly, when you are connected to the proxy, and (ii) Secondly, without being connected to the

proxy. What differences do you observe?

When not connected to proxy, you can see the connection being made with www.google.com

Figure.7. Response while not connected to proxy

i. When connected to the proxy, you can only see the proxy server!! (in this case,

172.26.90.4)

Figure.8. Response while connected to proxy

After you are done with your experiments, it is recommended to stop tinyproxy because if you're

going to leave Tinyproxy running all the time, it will eventually eat all your memory and lock up

your server.

sudo /etc/init.d/Tinyproxy stop
Before you leave, please remove tinyproxy from your machine so that the next lab’s students can

have the opportunity to configure it themselves.

sudo apt-get remove tinyproxy

DNS (Domain Name Server):

The Domain Name System (DNS) is a hierarchical naming system for computers

participating in the Internet. It associates information with domain names assigned to each of

the participants. Most importantly, it translates domain names meaningful to humans into the

numerical (binary) identifiers associated with networking equipment for the purpose of locating

http://www.google.com/
http://www.google.com/

26 | P a g e

and addressing these devices world- wide.

An often-used analogy to explain the Domain Name System is that it serves as the phone

book for the Internet by translating human-friendly computer hostnames into IP addresses. For

example, the domain name “www.example.com” translates to the address 93.184.216.119

(IPv4).

http://www.example.com/

27 | P a g e

Experiment 2: Understanding the records returned by DNS website

1. Open “network-tools.com/nslook/” in a web browser. This website provides an online

tool for DNS lookups.

2. Type “bits-pilani.ac.in” in the domain textbox (as shown in Figure. 9). Click “Go” button.

http://network-tools.com/nslook/

28 | P a g e

Figure.9. DNS Non-authoritative response

o What is displayed in the Answer records?

o What is the destination port number of the query message? What is the IP address

to which the query message is sent?

o How many additional records are found in the DNS response?

o What are the IP addresses of BITS name servers?

3. Type “bits-pilani.ac.in” in the domain (as shown in Figure. 10). Change the server address

to “202.78.175.200”. Click “Go” button.

Figure.10. DNS Authoritative response

o What is an authoritative response?

4. Type “root-servers.net” in the domain (as shown in Figure.11.). Click “Go” button.

o What is displayed in Answer records?

o What is the total number of root servers?

o What is displayed in the Additional records?

o What is the IPv4 and IPv6 address of a.root-servers.net?

29 | P a g e

30 | P a g e

 Figure.11. DNS Root servers

31 | P a g e

References
➢ Wireshark HTTP: http://code.bretonstyle.net/?page_id=176

➢ Tinyproxy link1: http://www.justinmccandless.com/blog/Set+Up+Tinyproxy+in+Ubuntu

➢ Tinyproxy link2: http://www.gypthecat.com/tinyproxy-a-quick-and-easy-proxy-server-on-ubuntu

➢ Online DNS Lookup Tool: network-tools.com/nslook

